CINAR Storm!

aka CINAR Integrated Rapid-Response Observations and Ocean Ensemble Optimization to Improve Storm Intensity Forecasts in the Northeast U.S.

> NERACOOS 2013 Annual Meeting Riley Young Morse Gulf of Maine Research Institute

Gulf of Maine Research Institute Science. Education. Community.

Project Goals

- Improve forecasting of intensity of hurricanes and winter storms in the Middle Atlantic Bight and Gulf of Maine
 - Irene: overestimated, Sandy: underestimated
- Improve inundation forecasting with rapid response observations and numerical modeling
- Leverage extensive observation and modeling capabilities and experience of the region
 - CINAR partners, NERACOOS and MARACOOS, OOI Pioneer Array and IOOS Coastal Ocean Modeling Testbed

1. Construct and deploy a rapid response autonomous sampling

- Air-Deployed ALAMO Floats
 - (Pls: Jayne, Owens)
- 4 dedicated and reusable storm gliders deployed on cross shelf transects covering the mid to outer shelf for each storm
 - (Pls: Glenn, Pettigrew, Boicourt, Todd, Gawarkiewicz)
- 10 low-cost, reusable "portable" buoys in an alongshore array at key areas on the inner shelf where storm surge causes the most flooding and damage on the northeast Atlantic coast
 - (PI: Pettigrew)

2. Use an ensemble of ocean models

assimilate real-time data

- a) to define the initial temperature structure
- b) evaluate ocean model sensitivities
- c) refine the ensemble weighting for accurate specification of the rapidly changing storm conditions: vertical mixing, upper layer heat content, and air-sea fluxes

model storm surges & coastal inundation for the continental shelf & adjacent estuaries

a) develop high-resolution inundation simulations and graphic visualizations in regions of greatest vulnerability (Chesapeake Bay, coastal New Jersey, and Scituate, MA)

ALAMO profiling floats

Deployed from C-150 aircraft, "Hurricane Hunters" during summer storms in slope sea

Multiple depth profiles: temperature, pressure, 3-D acceleration (conductivity in future)

- Daily 1000 meters
- Storm: 200 meters each hour
- Provides data for evolution of ocean temp before/after passage of storm
 INTERNAL RESERVOIR

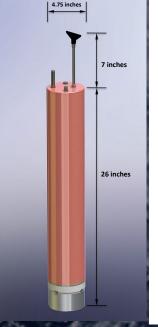
Data transmitted to WHOI via Iridium, assive Drift available through multiple data centers BATTERIES

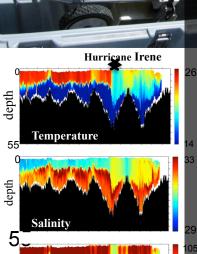
EXTERNAL RESERVOIR

-2 km

elecommunication

Satellite


Satellite Uplink Report Measurements


and Float Diagnostics

Ascent to Surface Record Profile

CTD powered on to measure in situ temperature, salinity and pressure.

Sep 07

(DO) Aug 12

Storm Gliders

RU23 Temperature [^oC]

- 4 gliders one deployed by each seagoing research institutions in mid, outer shelf
- Specific sensor suites tuned to forecasting needs (not available on existing gliders)
 - CTD, optical sensor, accelerometer, current profiler
- Designed to sample parameters controlling mixing on continental shelf during storms
 - Data available through NERACOOS, MARACOOS, NCEP, NAVO, CINAR, National Glider Plan data management

Rapid response data buoys

10 portable buoys, simple moorings

MARK POLYTRON AS FOLLOW

5 M 10 M 20 M 25 M 30 M 40 M 45 M 55 M

> 300 LB 800 LB 800 LB

MEASURE

4 M 9 M 14 M 19 M 24 M 29 M 34 M 39 M 44 M 49 M 54 M 64 M

- Capable of deployment from small boats as storm approaches
- Deployed in 10m 30m depth contours in inner shore and estuaries

A0106

SBE37 SM

SBE ICC

SBF 37 IM

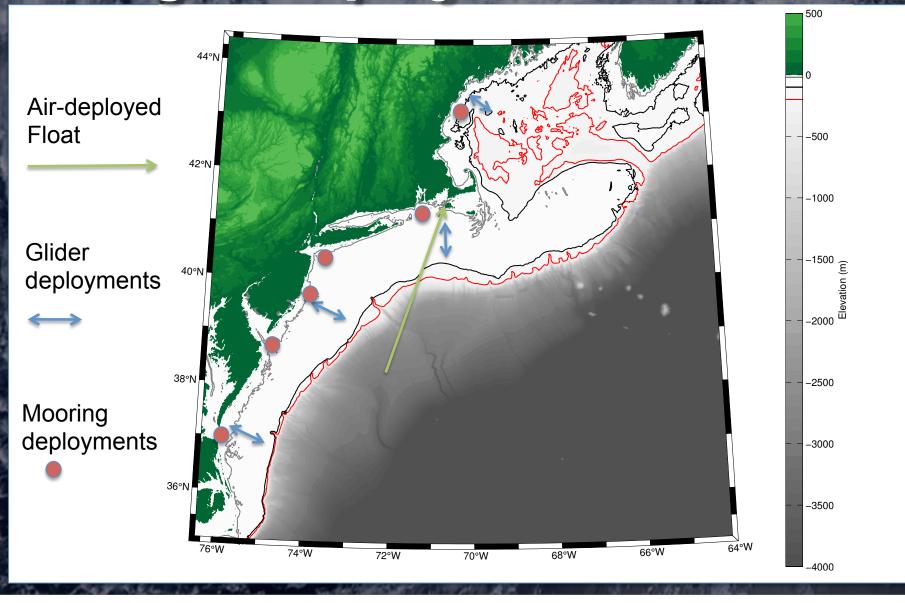
SBE 16 Dissolved Oxyger

RDI 300 KHz ADCH

MOORING A

Massachusetts Bay

ODA9


U. Maine

Wind, Air Temperature Visibility, Waves, GOES

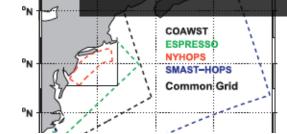
GPS, solar panels, cellular phone antenna. Campbell CR10X

- Parameters include: surface temperature and salinity, wind, waves, atmospheric pressure and water depth
- Data telemetered to UMaine in 15 minute intervals, distributed via NERACOOS/MARACOOS to CINAR, IOOS, and modeling groups

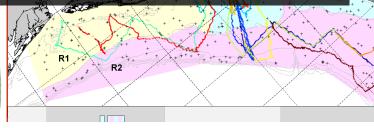
Target Deployment Locations

2. Use an ensemble of ocean models

Googl


Ensemble modeling (Wilkin & Curchitser - Rutgers, Chai - UMaine)

 Improve understanding of ocean mixing response to severe storms
Improve predictability, quantify model uncertainty and sensitivity with rapid-deployed floats, buoys and gliders


Ocean inundation forecast simulations (Li – UMaryland, Chen & Beardsley – UMass, Xue – UMaine)

Forecast simulation of inundation with ROMS/FVCOM models and
²⁹⁰ rapid-deployed sensors.

Hindcast simulations of Hurricane Sandy with FVCOM surge model.

Project Outcomes

- Share results with Joint Working Group with NCEP and NOS so observations and model results enter the stream of information and guidance available to advise NWS forecasters
- Leverage data management capacity of RAs (NERACOOS and MARACOOS) for wider distribution
 - PI: Young Morse GMRI/NERACOOS

